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ABSTRACT
In the 21st century learning increasingly happens on the social
web. Learning has evolved into an interactive social process pro-
ducing large amounts of data across a multitude of inhomogeneous
systems. To identify the role of individual actors and groups of
actors the whole global learning network needs to be analyzed.
The work presented in this paper ingests learning data into a cloud
hosted distributed temporal graph model with a supporting dis-
tributed processing framework to calculate global graph metrics.
The presented simple architectural approach builds upon the xAPI
specification to ensure compatibility and flexibility. Based on the
global graph metrics we can detect communities and identify infor-
mation brokers. This information enhances the understanding of
the learner’s personal learning network and its development over
time. It contributes to ongoing efforts to guide learners’ through the
tangled undergrowth of the global social learning network towards
individuals and communities relevant to their interests, skills and
aptitudes.
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1 INTRODUCTION
Social interactions play a key role in the process of learning. Con-
nectivism — a learning theory proposed by Siemens [13] — assumes
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that knowledge is acquired through the connections between the
learner and his personal learning network (PLN). A PLN is the set
of interpersonal connections to other people related to the per-
sonal learning process. Connectivist Massive Open Online Courses
(cMOOCs) build upon connectivism. Instead of using a single plat-
form driven approach like traditional MOOCs, cMOOCs use the
social web (Facebook, Twitter, YouTube, GoogleDocs) to connect
course participants, to host and share learning artifacts, and to
collaboratively learn. Their non-hierarchical structure, constant
evolvement over time, and massive amount of participants makes
them large-scale temporal social networks. These networks are par-
ticularly hard to analyze as interaction data is inhomogeneous and
spread across multiple systems and platforms. The ExperienceAPI
(xAPI) was designed to overcome exactly these problems. A wide
range of systems that adopt the standard as well as data scraping
tools that import data from non-adopting systems (see e.g. [6]) help
to collect all relevant information.

While the term PLN emphasizes the micro-scale of learning net-
works i.e. the local network of an individual, macro-scale analytics
of the network provide essential information about roles of indi-
viduals and affiliation to communities. We strive to derive global
information from the network (communities, trends, etc.) to enrich
the results in local PLN analytics.

Pentland et.al. [1, 10] demonstrated that analyzing social net-
works does not only lead to a better understanding of the network,
but also of its nodes. Preferences, interests and skills can be de-
ducted from personal social networks. Personal learning networks
evolve over time and changes in the personal learning network
reflect information about the development of the learners’ focus,
preferences and aptitudes. Mucha et.al. [9] introduced an approach
that accounts for the temporal dynamics of networks.

In this paper, we use the work of Pentland et.al. and Mucha et.al.
as the theoretical base model for novel ways of analyzing learner
interaction. We claim that, social interaction data generated by any
learning system supporting the xAPI, can be represented as a tem-
poral, dynamic, directed, weighted graph. We use a novel platform
for distributed temporal graph processing in our prototypical im-
plementation of a learning dynamics analytics platform. The tools
originating from this work are designed to be scalable and thus are
able to accommodate to very large temporal graphs that occur in
real world learning networks as in cMOOCs.

The paper at hand documents the current progress in designing
the architecture for this system, the status and experiences with
the already implemented parts of the system, and gives an outlook
on prospective interesting metrics that can be computed with the
proposed architectural approach.
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Figure 1: Social Interaction in social network applications

The remainder of this paper is structured as follows: In section
2 we elaborate on social interaction data in the context of learning.
In section 3 we briefly describe our distributed temporal graph
processing system and its concepts. In section 4 we present our
architectural solution and our graph model for inferring and an-
alyzing temporal personal learning networks from learning data.
In section 5 we list our results and give an outlook on future work
before we conclude in section 6.

2 SOCIAL LEARNING EXPERIENCE
While previous standardization approaches in technology enhanced
learning focused mainly on content interoperability, current ini-
tiatives have different foci. One of the most notable recent devel-
opments was the specification of the xAPI as an essential part of
the Training and Learning Architecture (TLA) envisioned by the
Advanced Distributed Learning Initiative (ADL). The xAPI specifi-
cation defines the structure of xAPI statements and a web service
interface. By design, it does not constrain the available vocabulary.
The ADL expects the respective Communities of Practice (CoP) to
agree on a controlled vocabulary for their respective domain. The
controlled vocabulary consists of verbs and activity types. For our
approach, we build on the work of the social collaboration CoP,
which focuses on various kinds of collaborative systems like social
network applications (e.g. Facebook), wikis or Sharepoint. It strives
to agree on a list of verbs and activities expressing (most of) the
interactions within such systems. Whilst discussion is still ongoing,
some essential actions in social network applications have been
pointed out by Kitto et.al. [6].

Figure 1 illustrates a set of typical social interactions in social
media applications. In this example, some potential social inter-
actions on the social web platform Facebook are displayed. The
simple Facebook post already illustrates the many different types of

social actions possible. Actions initiating social interaction such as
creating a post, referring to something (tag) or somebody (mention)
can trigger reactions of other actors in the system. For communica-
tion the act of receiving is essential (Shannon-Weaver model [12]).
Within typical social network application actions like see, read,
watch, click or open represent receiving acts. Social interaction is
established by reactions to social actions. The action of creating an
artifact (text, photo, video, etc.) becomes part of a social interaction
when others read, like or share it.

Social interactions connect people. Dependent on the users’ in-
tent, different grades of involvement are shown. This involvement
is expressed through the use of different actions (see, like, comment,
share). Related work [2, 4] suggests that frequency, quality and im-
portance of social interactions between two persons can be used as
metrics for social bonds. Our model uses similar dimensions: the
aforementioned social involvement [ι] and the directedness [δ ]. The
social involvement is inherent to the type of social action chosen by
the actor. Directedness accounts for the person’s intent to connect
with a specific recipient or a specific group of recipients. Social
interactions that address larger groups have a smaller intent to
create or intensify interpersonal bonds. A person of public interest
that creates a post that is read, liked and commented by thousands
of people has smaller intent to create or intensify his social bonds
individual followers than a person creating a post for a small group
of selected individuals. Directedness of social actions is a measure
for the intent of targeting a specific person with that action. As
we distribute the action equally over all addressed individuals the
directedness δ is δ = 1/n, where n is the number of addressees.

3 TEMPORAL GRAPH PROCESSING
In this paper we rely on the definitions of a dynamic and temporal
graphs as explained in [5] and [7]. We use slightly different signs
and symbols compared to the original work to avoid ambiguities.

A graph G is a pair (V ,E) where V is a finite set of vertices, and
E is a finite set of edges of ordered pairs {u,v} with u ∈ V and
v ∈ V . A graph G can be called vertex-dynamic if the set V varies
over time, and edge-dynamic if the set E varies over time. Learning
networks are both vertex- and edge-dynamic as learners, artifacts,
etc. are modeled as vertices and can occur and be removed at any
point in time, and edges between these vertices can be added and
removed any time. A vertex- and edge-dynamic graph is a dynamic
graph Gd .

A temporal graph T is a set of graphs G0,G1,G2, . . . ,Gt where
each Gt = (Vt ,Et) such that any Gt ∈ Gd is a snapshot of the dy-
namic graph at time t . Ordered sets τ = Gx ,Gx+1,Gx+2, . . . ,Gx+n
with τ ∈ T are selections of time-spans x . . . x+n from the temporal
graph.

3.1 DynamoGraph
As the processing layer of our analytics platform we use the Dy-
namoGraph [14] platform which is a distributed implementation of
the aforementioned temporal graph model. DynamoGraph is both
a temporal graph storage and processing framework. Its users can
use service method calls to manipulate graph data (i.e. add, modify,
and remove vertices and edges).
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DynamoGraph relies on cloud-based computing infrastructure
and is capable of distributing temporal graph data and processing
over many compute nodes such that the system can accommodate
for a growing amount of data. Moreover, the size of the used com-
pute cluster can be adjusted during runtime. The system provides
mechanisms for fault tolerance.

Further DynamoGraph relies on distributed computing concepts
and is inspired by Pregel [8]. Pregel-style algorithms execute a
fully distributed compute function c(v, Γ) over every vertex v in
the graph and the global memory Γ, followed by a messaging phase
which allows any vertex v to send a message to any other vertex y.
Algorithms in Pregel halt when every vertex has voted to halt the
algorithm.

DynamoGraph provides several extensions over the original
Pregel computing concept: (1) between each compute iteration
a global function γ [11], (2) temporal selection and aggregation
of vertices in a time-frame τ , (3) aggregation of sets of distributed
algorithms that can be executed in a batch. The framework supports
the automatic execution of graph algorithm in certain intervals of
time and upon certain events. This way it is possible to continuously
evaluate metrics and to live monitor temporal graphs.

3.2 Temporal Graph Metrics
The used framework provides a standard set of graph metrics. The
following highlights several metrics we propose to be used for PLN
analytics.

Centralitymeasures can be computed to determine how strongly
any given vertex is connected to its neighborhood. As static informa-
tion, this allows us to find strongly connected learners and artifacts.
In the temporal use case, one can observe the evolution of centrality
over time. On a macro-scale this metric can then be used to observe
if a group of learners successfully involves into a certain topic. On a
micro-level this allows to draw conclusions about personal learning
progress.

A special case of centrality is betweenness centrality [3]. Nodes
with high betweenness-centrality are naturally found at the edges
of structural clusters in a graph and usually mark brokers between
these structural clusters. In temporal analysis betweenness cen-
trality is interesting because it can show how learners progress
from learning a single topic to a multi-disciplinary learner. In PLN
analytics, we can use it to identify and recommend relevant brokers
and learning communities.

Through neighborhood analysis direct vertex neighbors (and
possibly their neighbors) can be analyzed. By comparing the vertex
neighborhood from different time-spans, one can quantify learning
progress (Is the progress fast or slow?Are theremany topic switches
in a PLN?). It is assumed that the PLN of an active learner will grow
over time.

4 LEARNING NETWORK GRAPH
As mentioned before our goal is to create a global view on social
learning networks to identify communities, trends and relevant
central brokers to enrich the results in local PLN analytics. As
laid out in the previous sections our approach uses methods from
temporal graph analysis to derive the relevant graph metrics.

 

Figure 2: Systemoverview - xAPI proxy to extract graph data

4.1 Prototype Architecture
In practice, this necessitates the transformation of learning data
into graph structure. Technically speaking our prototypical imple-
mentation is capable of extracting social graph data from xAPI
compliant systems. This is achieved using an xAPI proxy layer.
The proxy layer sits between an xAPI statement generator and the
respective learning record store (LRS) and forwards extracted social
interaction data to the DynamoGraph API.

Figure 2 shows the overall architecture of our system. The in-
coming xAPI statements that are produced by various generators
pass through the proxy layer to the respective LRS. As displayed in
the figure a multitude of proxy instances populate extracted social
interaction data to a single cloud based DynamoGraph instance.

DynamoGraph offers query interfaces to retrieve relevant graph
metrics, detected communities and information brokers from the
resulting temporal graph. Users of the DynamoGraph API can
formalize temporal Pregel algorithms, bundle them in Java JAR files
and submit these as queries to the cloud-based distributed cluster.
This means that DynamoGraph not only provides distributed and
scalable temporal graph storage but also distributed processing
over this data.

Given this brief description of DynamoGraph it becomes obvious
that the system can be used as the base layer for high-level analyt-
ics toolkits. These analytics toolkits are responsible for presenting
relevant results to their users. This can be achieved for instance
through visualization of the PLNs or through dashboards that pro-
vide metrics and guidance about a user’s PLN in context with the
global social learning network. Example for guidance provided by
the system could be "We suggest that you learn about the topic XYZ
next, since many people in your current communities are currently
learning about it!" or "How about joining community ABC, most
users there have similar learning modalities!"

4.2 Learning Network Graph Model
Our temporal graph model consists of typed vertices and typed,
weighted and directed edges. The vertex types resulting from the
xAPI statement specification are listed in Table 1. We create a vertex
for each statement alongside with the vertices for actor, object,
and (if present) context. We connect the statement vertex with
its properties using a bidirectional statement-property edge type.
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Table 1: node types to represent xAPI statements in a social
interaction graph. Asterisks (*) denote multiple vertices of a
type.

statement
property

value required
vertex type(s)

actor
agent agent
identified group group
anonymous group agent*

object

activity activity
agent agent
sub-statement statement
statement reference statement

context

instructor agent
team group, agent*
statement statement
contextActivities activity*

 

Figure 3: Graph model representing two linked xAPI state-
ments.

Thus, references to a statement are connected to all parts of the
statement, i.e. actor, object and context.

Actors and objects are connected by directed edges typed with
the verb of the statement. We refer to actions as direct social inter-
action if an object is an actor or a group of actors.

Figure 3 shows the graph representation of two linked statements.
In the displayed example John creates a post and Jane comments
on that. Her comment refers to the fact that John created a post and
thus connects her with the actor John and the content, the created
activity of the type post. The statement vertex mediates the social
interaction in the given example. We refer to this type of social
interaction as indirect social interaction as Jane does not directly
interact with John, but rather with a trace he left. This aligns well
with Vygotsky’s activity theory [16].

Multiple actions may occur between two vertices. Thus, the
graph model is extended to a multi-graph model to preserve the
granular information of recorded social actions.

The model of the social learning network itself, however, is
represented by a graph. We achieve that by reducing all equally
directed edges between two vertices u and v to a single edge {u,v}
with the weightwt at a given time t when processing the network
graph:

wt ({u,v}) =
∑

{u,v }∈Et
ι({u,v}) ∗ δ ({u,v})

Values for social involvement [ι] and directedness [δ] are as-
signed to each edge {u,v} in the social interaction multi-graph
model at creation time.

The chosen approach allows tracing which actions lead to a
certain social bonding, as the social network graph model is directly
derived from the social interaction multi-graph model. A further
benefit of this approach is edge weights can be adjusted post-hoc by
refining the assumed values for social involvement for certain types
of actions. Finally, we can investigate whether a certain social bond
is based on more on frequency, social involvement or directedness.
In other words, we can distinguish whether a connection is based
on frequent superficial interaction or rather on less frequent, but
more intense interaction.

5 RESULTS AND FUTUREWORK
The authors are currently in the process of molding the presented
reference architecture in a working scientific prototype. As doc-
umented in earlier work [15] the base layer, relevant data import
interfaces, and basic temporal graph metrics are available in soft-
ware. It has been shown that the used data storage and processing
architecture is scalable.

First experiments with converting xAPI statements into temporal
graph models show promising results. Semi-automatic conversion
of scraped xAPI learning data can already be uploaded to the graph
processing platform to be visualized and for computing general
metrics about this data.

These preliminary results make us keen to continue with this
research. We identified the following issues that are to be addressed
next:

xAPI Vocabulary: Our current prototype supports a small set
of statements and the transformative actions are defined in pro-
cedural code of the proxy implementation. We strive to achieve a
generic implementation that allows us to define transformations
declaratively to ensure extensibility.

Online statement import: As the DynamoGraph API are not
yet available as web services, our proxy implementation currently
writes the data into a DynamoGraph CSV file which has to be up-
loaded manually. Hence, we plan to implement a REST API for
DynamoGraph to achieve our vision of scalable live learning net-
work analytics.

Model validation:We plan to implement a simple online social
learning network application that allows us to collect our own
from students without violating their privacy. Although that data
naturally lacks the desired massive scale, we can use it to validate
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important aspects of our model such as effects of direct and indirect
social interaction.

Analytics web application: Finally, we want to demonstrate
the immediate practical value of our approach by implementing a
prototypical learning network analytics toolkit that allows individ-
ual learners to review their own metrics, community affiliations,
and recommendations.

6 CONCLUSIONS
In this paper, we have presented our early results on temporal ana-
lytics of the global learning network to enhance the understanding
of personal learning networks (PLNs).We have proposed a reference
architecture and have demonstrated its mere technical feasibility
through implementing a prototype. We can demonstrate that the
prototype is capable of uploading learning networks to the Dy-
namoGraph processing platform. However, up to now experiments
were only conducted with artificial learning networks.

We have set the case for ever growing data in the area of PLNs
and have argued that analyzing data spanning several learning plat-
forms supporting xAPI will become a crucial part in future learning
systems. We have shown that a cloud based solution provides the
scalability necessary to implement such a centralized analytics
repository.
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